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/ Introduction \ / Prediction using neighborhood information \

House purchase is a big decision in most people’s life. A good housing price prediction model that can Six regression models were used here, they are linear regression, ridge regression, lasso regression,
Integrate multiple factors is required for both house buyers and sellers when making an important support vector regression, random forest, and a nawe ensemble method.
financial decision (Banerjee 2017). Although there have been existing methods for house price

. : . . . Mean Squared Error Coefficient of determination R"2 : :
prediction, the accuracy isn’t good enough. Besides, most prediction models only adapt physical i Figure 4. Comparison of

features of a property, leaving important features unconsidered, such as neighborhood gquality, school N S 7 . ZL‘SAZ?Jed calculated mean squared

information, crime rate, etc. In this project, we aim at developing an accurate house price prediction — S - error(left) and coefficient

model in Los Angeles area with integration of multiple community/environmental data and local 5 0 9 - determination of R*(right)

economic indicators. We will use various machine learning algorithms to make the prediction. The x o 8 o |

results will be presented in the form of visually interactive map. = _ f | For all these linear-based
Z i algorithms, the expanded

dataset worked better than
the original dataset,
giving the lower errors and
higher scores.
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* Physical properties of houses: number of bedrooms, bathrooms, total area, built year, etc.

« School-related: school type, school level, rating, enroliment, student/teacher ratio, free lunch ratio
and ethnic structure
04

« Community-related: crime index, population, average age, ethnic structure, average household 0.20 —
Income, commute time, hospital data

Physical properties of houses data are collected from Kaggle Zillow competition (~6 million records),
school-related data and community-related data are scrapped from website by using API. The above
data were merged using ZIP code.
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Figure 5. Important
features using original data
(left) and expanded data
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Data pre-processing and feature engineering
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Figure 6. logerror (left) and house price (right) distribution
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Map visualization
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U T An interactive map is implemented using Leaflet, an open-source JavaScript library for mobile-
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We used a small sub-dataset which has 60,000 instances to do the training and testing. Mean Absolute
Error (MAE) and logerror were used to evaluate the results.
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s . . Conclusion
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250000 1 ® * We developed an accurate house price prediction model with integration of multiple community and

01 A

2700001 o » | | | | | | school data, and visualized the result on an interactive map. The innovations of our ideas include:

i op

75 50 75 100 125 150 175 200 | | e ' « Scrape information of the local neighborhood and combine them with physical features of
I properties:

Figure 2. The MAE at different max depth of Figure 3. logerror distribution at Max Depth = 8 8 < Analyze feature importance and remove irrelevant data;
decision tree e Conduct house price prediction using machine learning models;
« Build an interactive map using Leaflet.js to achieve layer controls and mobile compatibility.
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